Faktayang benar tentang hubungan antara cahaya dan kemampuan mata untuk melihat benda adalah . Pelajari Juga: Manakah dari gambar di bawah ini yang menunjukkan pembiasan cahaya dari udara ke air . Jawaban: A. Soal No. 8. Peristiwa yang merupakan akibat pembiasan cahaya yaitu . A. Terbentuknya warna pada gelembung sabun.

Jawaban yang benar adalah gambar 1 dan 2. Pembiasan cahaya adalah perubahan arah rambat cahaya ketika cahaya melewati medium yang berbeda. Pada pembiasan cahaya berlaku beberapa ketentuan, yaitu 1 Jika sinar datang dari medium kurang rapat ke medium lebih rapat, sinar akan dibiaskan mendekati garis normal. 2 Jika sinar datang dari medium lebih rapat ke medium kurang rapat, cahaya akan dibiaskan menjauhi garis normal. 3 Jika sinar datang tegak lurus batas dua medium, maka sinar tidak dibiaskan melainkan diteruskan. Asumsikan data indeks bias beberapa zat sebagai berikut. indeks bias udara = 1 indeks bias kaca = 1,5 indeks bias air = 1,3 indeks bias intan = 2,42 Semakin besar indeks biasnya, maka medium semakin rapat. Tinjau gambar 1. Tingkat kerapatan medium udara Hukumyang berlaku pada pembiasan cahaya, yaitu: Sinar datang, garis normal, dan sinar pantul terletak pada satu bidang datar dan berpotongan di satu titik. Maka, sinar istimewa yang benar pada cermin cekung yaitu gambar B Jawaban B. Soal No.9. Perhatikan gambar.

Assalamu'alaikum Wr. Wb. Selamat datang di blog Artikel & Materi . Senang sekali rasanya kali ini dapat kami bagikan materi lengkap Fisika Pembiasan Cahaya Refraksi . Mari kita bahas selengkapnya.. PEMBIASAN CAHAYA Pengertian Pembiasan refraksi cahaya adalah pembelokan arah rambat cahaya. Pembiasan cahaya disebabkan medium zat Perantara yang dilalui cahaya berbeda kerapatam optiknya yang menyebabkan kecepatan cahaya pada medium itu berbeda pula. Contoh Pembiasan Cahaya Cahaya dari udara ke kaca, dari air ke kaca, dari udara ke air, dan sebagainya kelihatan bengkok/membelok. Alat yang digunakan untuk menyelidiki pembiasan cahaya adalah cakra optik. Hukum Snellius pada pembiasan Cahaya menyatakan a. Sinar datang, garis normal, dan sinar bias terletak pada satu bidang datar b. Sinar datang dari medium kurang rapat ke medium yang rapat dibiaskan mendekati garis normal c. Sinar datang dari medium rapat ke medium yang kurang rapat dibiaskan menjahui garis normal d. Sinar datang yang tegak lurus dengan bidang batas tidak dibiaskan, melainkan diteruskan. pembiasan cahaya INDEKS BIAS Indeks bias mutlak adalah perbandingan antara cepat rambat cahaya dalam ruang hampa dan cepat rambat cahaya dalam medium lain. Indeks bias medium yang rapat itu lebih besar dari indeks bias medium yang kurang rapat. Sebaliknya indeks bias medium kurang rapat itu lebih kecil dari indeks bias medium yang rapat. Indeks Bias mutlak dirumuskan Contoh Seberkas cahaya merambat dari udara ke dalam air. Bila diketahui indeks bias udara n udara 1,00 , dan indeks bias aiar n air 1,33, dan cepat rambat cahaya dalam ruang hampa c 3 x 108 m/s. tentukan kecepatan rambat cahaya dalam udara dan dalam air ! Penyelesaian Diketahui n udara = 1,00 N air = 1,33 C = 3 x 108 m/s Ditanya a. C udara ? b. C air ? PEMBIASAN PADA PRISMA Prisma adalah benda bening yang dibatasi oleh dua bidang permukaan yang bersudut. Besarnya sudut antara kedua permukaan itu disebut sudut pembias b. Apabila seberkas cahaya masuk pada salah satu permukaan prisma maka cahaya tersebut akan dibiaskan dari permukaan prisma yang lain. Sudut deviasi adalah sudut yang diperoleh dari perpanjangan sinar datang dan sinar bias yang keluar dari prisma. Besarnya sudut Deviasi berubah-ubah bergantung pada sudut datang i. Sudut deviasi dirumuskan D = I + r1 -b LENSA Pengertian Lensa Lensa adalah benda bening yang dibatasi oleh dua bidang yang dua-duanya lengkung atau salah satunya adalah bidang datar. Macam-macam Lensa Berdasarkan bentuk permukaannya lensa dibedakan menjadi Lensa cembung dua bikonveks Lensa cembung datar plankonveks Lensa cembung cekung konveks konkaf Lensa cekung dua bikonkaf Lensa cekung datar plankonkaf Lensa cembung cekung kankaf konveks LENSA CEMBUNG Lensa cembung adalah lensa yang bagian tengahnya lebih tebal daripada bagian tepinya dan bersifat konvergen mengumpulkan cahaya Bila seberkas sinar sejajar sumbu utama menuju lensa cembung maka akan dibiaskan melalu satu titik yang disebut titik api utama titik fokus Sinar-sinar istimewa lensa cembung Sinar datang yang sejajar dengan sumbu utama dibiaskan melalui titik fokus utama F2. Sinar datang yang melalui titik fokus F1 dibiaskan sejajar dengan sumbu utama. Sinar datang yang melalui pusat optik lensa tidak dibiaskan melainkan diteruskan. Pembentukan bayangan pada lensa cembung Pembentukan berada di F1, bayangan tidak terjadi. Benda berada diantara F1 dan 2F1, bayangan terbentuk di atas 2F2 sifatnya nyata, terbalik, dan diperbesar. Benda berada di F1 dan O, bayangan di atas 2F1 sifatnya, maya tegak, dan diperbesar. Banda berada tepat di 2F1, maka bayangan terbentuk tepat di 2F2 sifatnya nyata, terbalik, dan sama besar. Benda berada di atas 2 F1 maka bayangannya akan berada di antara F2 dan 2F2 sifatnya nyata, terbalik, dan diperkecil. Lensa Cekung Lensa cekung adalah lensa yang bagian tengahnya lebih tipis daripada bagian tepinya dan bersifat menyebarkan berkas cahaya divergen. Sinar-sinar istimewa lensa cekung Sinar datang yang sejajar dengan sumbu utama keluar dari lensa seolah-olah berasal dari titik fokus utama F2 Sinar datang yang menuju titik fokus utama F1 dibiaskan sejajar dengan sumbu utama. Sinar datang yang melalui pusat optik lensa tidak dibiaskan melainkan diteruskan. Dispersi cahaya adalah penguraian cahaya polikromatik menjadi cahaya monokromatik. Cahaya Polikromatik adalah cahaya yang terdiri dari bermacam-macam warna. Contohnya cahaya putih. Chaya Monokromatik adalah cahaya yang hanya memiliki satu panjang gelombang saja Tidak dapat terurai menjadi cahaya lain Contoh sinar Merah, Sinar jingga, Sinar Kuning, Sinar hijau, Sinar biru, dan sinar Ungu. Dispersi Cahaya Pada Prisma Artikel terkait Cahaya Materi Fisika Lengkap Pembiasan Cahaya Materi Fisika Lengkap Alat Optik Pengertian, Jenis, Macam, dan Gambar Sumber Demikian materi lengkap Fisika Pembiasan Cahaya Refraksi meliputi Pengertian dan contoh pembiasan cahaya, indeks bias, pembiasan pada prisma, lensa cembung dan lensa cekung serta dispersi cahaya. Semoga bermanfaat...

Contohsoal IPA ini berisi soal-soal tentang mengenai Cahaya dan Optik yang diajarkan pada peserta didik SMP MTs Kurikulum 2013. Melalui contoh soal IPA ini, diharapkan dapat membantu peserta didik jenjang SMP/MTs dalam memahami materi IPA tentang Cahaya dan Optik. Baca : PPT Materi IPA Kelas 7 8 9 SMP MTS Kurikulum 2013 Lengkap.
PembahasanPembiasan terjadi ketika cahaya melewati medium yang berbeda kerapatannya. Apabila cahaya datang dari medium rapat ke renggang maka akan dibiaskan menjauhi garis normal. Apabila cahaya datang ari medium renggang ke rapat maka akan dibiaskan mendakati garis normal. Kaca lebih rapat dibandingkan udara, sehingga cahaya datang dari udara dibiaskan mendekati garis normal pada kaca, begitu sebaliknya. Jadi jawaban yang paling tepat adalah terjadi ketika cahaya melewati medium yang berbeda kerapatannya. Apabila cahaya datang dari medium rapat ke renggang maka akan dibiaskan menjauhi garis normal. Apabila cahaya datang ari medium renggang ke rapat maka akan dibiaskan mendakati garis normal. Kaca lebih rapat dibandingkan udara, sehingga cahaya datang dari udara dibiaskan mendekati garis normal pada kaca, begitu sebaliknya. Jadi jawaban yang paling tepat adalah B. A Spektrum cahaya. Cahaya (Spektrum optic, atau spektrum terlihat atau spektrum tampak) adalah bagian dari spektrum elektromagnet yang tampak oleh mata manusia. Radiasi elektromagnetik dalam rentang panjang gelombang ini disebut sebagai cahaya tampak atau cahaya saja. Tidak ada batasan yang tepat dari spektrum optik; mata normal manusia akan
Pembiasan cahaya atau disebut juga difraksi adalah suatu peristiwa pembelokan arah rambat cahaya ketika melewati batas antara dua medium yang berbeda kerapatan optiknya. Pembiasan cahaya terjadi akibat kecepatan cahaya berbeda pada setiap medium. Kerapatan optik suatu medium dinyatakan sebagai indeks bias. Semakin besar indeks bias suatu medium, maka kerapatannya semakin besar pula. Oleh karena itu, jika seberkas cahaya melalui suatu medium yang indeks biasnya besar, maka akan semakin besar pula cahaya tersebut dibelokkan atau dibiaskan. Nah pada kesempatan kali ini, kita akan belajar mengenai contoh-contoh fenomena dalam kehidupan sehari-hari yang berhubungan dengan peristiwa pembiasan serta penjelasan secara fisika bagaimana proses terjadinya fenomena tersebut. Kita akan membicarakan empat fenomena fisika antara lain peristiwa terjadinya fatamorgana, pembentukan bayangan pada periskop, dasar kolam yang tampak lebih dangkal, dan posisi benda-benda langit yang tidak pada tempat sebenarnya. Berikut ini penjelasannya. 1. Peristiwa terjadinya fatamorgana Fatamorgana merupakan sebuah istilah kepada suatu hal yang bersifat khayal yang tidak mungkin dapat dapat dicapai. Karena memang peristiwa ini diambil dari gejala optik yang menyebabkan suatu permukaan yang sangat panas atau memiliki suhu panas, tampak berkilat seperti ketika melihat permukaan air. Fenomena fatamorgana biasanya terjadi di tanah atau bidang yang luas dan panjang seperti jalan aspal, padang pasir atau padang es. Sebagai contoh, pada waktu siang hari yang panas terik ketika kita sedang berada di pinggir jalan raya beraspal, kita memandang jauh ke jalan raya ternyata terlihat seperti ada air di atas aspal. Kemudian setelah kita dekati ternyata air tersebut tidak ada. Mengapa hal ini bisa terjadi? Bagaimana penjelasannya secara fisika? Simak penjelasan berikut. Pada siang hari yang panas, cahaya matahari mengenai aspal sehingga permukaan aspal menjadi sangat panas. Karena aspal menjadi panas, maka lapisan udara yang dekat dengan permukaan aspal menjadi panas juga sehingga kerapatan optiknya menjadi lebih kecil renggang, kita sebut saja lapisan udara dingin. Sementara itu, lapisan udara yang letaknya beberapa centimeter di atas lapisan udara panas tersebut memiliki kerapatan optik yang lebih besar rapat, kita sebut saja lapisan udara panas. Pada pembiasan cahaya, jika sinar datang dari medium lebih rapat menuju medium kurang rapat renggang maka cahaya akan dibiaskan menjauhi garis normal. Perhatikan gambar di atas, sinar 1 datang dari lapisan udara dingin menuju lapisan udara panas maka dibiaskan menjauhi garis normal. Hal ini karena kerapatan optik lapisan udara dingin lebih besar daripada lapisan udara panas. Kemudian sinar 2 datang dengan sudut datang lebih besar lagi sehingga sinar dibiaskan sejajar dengan bidang batas antara lapisan udara dingin dan udara panas. Sudut datang sinar 2 ini merupakan sudut kritis, yaitu sudut datang yang menghasilkan sudut bias sebesar 90°. Kemudian sinar 3 datang dengan sudut yang datang yang lebih besar lagi dari sudut kritis sinar 2, sehingga sinar tidak lagi dibiaskan melainkan dipantulkan. Peristiwa ini dinamakan pemantulan sempurna. Apabila semakin banyak sinar datang seperti sinar 3, maka akan semakin banyak sinar yang dipantulkan secara sempurna. Kemudian dari perpotongan perpanjangan sinar-sinar pantul yang banyak tersebut akan menghasilkan suatu bayangan semu yang banyak jumlahnya dan akan terlihat seperti air. Jadi, sebenarnya, fatamorgana terjadi karena peristiwa pemantulan cahaya bukan pembiasan cahaya. Namun, untuk dapat menjelaskan peristiwa pemantulan sempurna kita perlu menggunakan konsep pembiasan cahaya. 2. Peristiwa pembentukan bayangan pada periskop Periskop adalah alat optik yang berfungsi untuk mengamati benda dalam jarak jauh atau berada dalam sudut tertentu. Bentuknya sederhana, yaitu berupa tabung yang dilengkapi dengan prisma pada ujung-ujungnya. Prisma ini akan memantulkan cahaya yang datang sejajar padanya, kemudian diatur sedemikian rupa sehingga membentuk sudut 45° terhadap sumbu tabung. Periskop digunakan pada tank kapal selam. Para navigator kapal selam memanfaatkan periskop untuk mengamati gerak-gerik yang terjadi di atas permukaan laut. Lalu bagaimana cara kerja periskop ini? Apakah ada keterkaitan dengan konsep pembiasan cahaya? Prinsip kerja periskop ini menggunakan konsep pemantulan sempurna. Proses pemantulan sempurna terjadi pada prisma yang digunakan sebagai alat optik untuk menangkap dan memantulkan cahaya. Prisma ini berjumlah dua buah yang disusun membentuk sudut 45°. Perhatikan gambar berikut. Ketika kita melihat ujung bawah periskop, sinar sejajar dari objek masuk lewat ujung atas mengenai prisma optik. Kemudian prisma tersebut akan memantulkan secara sempurna sinar dari objek tersebut membentuk sudut 45° ke arah prisma optik kedua. Kemudian sinar pantul dari prisma pertama tadi akan dipantulkan kembali 45° oleh prisma kedua menuju mata kita. Dengan demikian, kita dapat melihat objek tersebut. 3. Peristiwa dasar kolam yang tampak dangkal Jika kalian pernah memperhatikan kolam renang yang airnya jernih, maka akan tampak bahwa dasar kolam tersebut tampak dangkal. Namun jika kita menceburkan diri ke dalam kolam tersebut yang terjadi adalah dasar kolam ternyata tidak sedangkal yang kita lihat ketika berada di darat. Kenapa hal ini bisa terjadi? Bagaimana penjelasannya secara fisika? Pembiasan merupakan peristiwa pembelokan arah rambat cahaya karena melalui dua medium yang berbeda kerapatan optiknya di mana medium tersebut haruslah benda bening. Air jernih termasuk benda bening, sehingga pada air juga dapat terjadi peristiwa pembiasan. Ketika kita melihat dasar kolam, cahaya dari dasar kolam menuju mata kita. Ketika melewati permukaan air, cahaya akan dibelokkan menjauhi garis normal karena indeks bias air lebih besar dari indeks bias udara. Perhatikan gambar berikut. Sinar datang 1 dan 2 berasal dari dasar kolam menuju ke permukaan air, dan oleh udara, kedua sinar tersebut dibiaskan menjauhi garis normal menuju mata kita menjadi sinar bias 1 dan 2. Kedua sinar bias tersebut tidak berpotongan, yang berpotongan adalah perpanjangan kedua sinar bias. Di titik perpotongan perpanjangan kedua sinar bias ini terbentuklah bayangan semu dari dasar kolam yang letaknya di atas dasar kolam sebenarnya. Bayangan dasar kolam inilah yang terlihat oleh mata kita. Oleh karena itu, pada kolam yang airnya jernih, jika diamati dari atas permukaan air maka dasar kolam akan terlihat lebih dangkal dari yang sebenarnya. Jadi, bagi kalian yang tidak pandai berenang, jangan sampai terkecoh dengan ilusi optik semacam ini. Untuk menentukan kedalaman kolam yang sebenarnya, ada rumus yang bisa kalian gunakan. Rumus tersebut dapat kalian jumpai dalam artikel tentang Pembiasan Cahaya oleh Air, Contoh Soal dan Pembahasan. 4. Posisi benda langit tidak berada pada tempat sebenarnya Kalian tentunya pernah melihat jutaan bintang di angkasa ketika malam hari yang cerah bukan? Bintang merupakan benda langit yang dapat memancarkan cahaya. Karena memancarkan cahaya inilah, bintang-bintang di luar angkasa dapat terlihat dari bumi. Lalu sekarang yang menjadi pertanyaannya adalah, apakah posisi bintang yang kalian lihat dari bumi sama dengan posisi bintang yang sebenarnya di angkasa? Jawabannya adalah tidak. Kenap tidak? Bumi merupakan salah satu benda langit yang dapat dihuni oleh manusia. Bumi memiliki lapisan atmosfer yang banyak sekali memberi manfaat bagi kehidupan di Bumi, salah satunya adalah untuk melindungi makhluk hidup dari radiasi sinar ultraviolet yang dipancarkan oleh matahari. Lapisan udara pada atmosfer Bumi dengan lapisan hampa udara di luar bumi memiliki indeks bias yang berbeda. Udara pada atmosfer bumi indeks biasnya 1,0003 sedangkan ruang hampa udara vakum indeks biasnya adalah 1,0000. Meskipun selisihnya sangat kecil sekali, jika cahaya melewati dua lapisan udara tersebut tetap saja akan mengalami pembiasan. Hal ini yang menyebabkan kenapa bintang tidak berada pada posisi yang sebenarnya. Perhatikan gambar di bawah ini. Sebuah bintang di titik A tampak oleh kita ada di A’. Hal ini terjadi karena cahaya dari bintang dari medium hampa udara dibiaskan mendekati garis normal ketika berada di atmosfer bumi. Perpanjangan garis sinar bias ini akan menghasilkan bayangan dari bintang tersebut. Oleh karena itu, bintang-bintang yang terlihat di bumi sebenarnya tidak pada posisi yang sebenarnya, melainkan berada pada posisi yang lebih jauh lagi. Hal yang serupa juga berlaku untuk benda langit lainnya seperti bulan dan matahari. Umumnya, benda-benda angkasa yang kita lihat terangkat kira-kira 0,5° ke atas.
4 Menunjukkan bukti bahwa cahaya putih terdiri dari berbagai warna. 5. Memberikan contoh peristiwa penguraian cahaya dalam kehidupan sehari-hari. sifat-sifat cahaya yang mengenai cermin datar dan cermin (cembung dan cekung). 3. Siswa melakukan percobaan tentang pembiasan cahaya. 4. Siswa melakukan percobaan tentang penguraian cahaya.
Tentunya kalian sudah dapat menyebutkan contoh kejadian sehari-hari yang dapat dijelaskan dengan konsep pembiasan. Dasar kolam tampak lebih dangkal dari sebenarnya dan sebatang pensil yang dicelupkan ke dalam air tampak bengkok merupakan contoh kejadian sehari-hari yang berkaitan dengan terjadinya pembiasan cahaya. Pembiasan cahaya tidak sembarang, tetapi mengikuti hukum-hukum pembiasan. Hukum pembiasan pertama kali dinyatakan oleh Willebrord Snellius, seorang ahli Fisika berkebangsaan Belanda. Snellius melakukan eksperimen dengan melewatkan seberkas sinar pada balok kaca. Secara sederhana, percobaan Snellius ditunjukkan seperti pada gambar di bawah ini. Seberkas cahaya sinar laser/kotak cahaya di arahkan menuju permukaan balok kaca gambar kiri. Ternyata, sinar dibelokkan pada saat mengenai bidang batas udara-kaca. Jika digambarkan dalam bentuk dua dimensi gambar kanan, maka sinar datang dari udara dibiaskan dalam kaca mendekati garis normal. Sehingga besar sudut datang i selalu lebih besar dari sudut bias r. Jika percobaan yang sama diulang dengan sudut datang yang berubah-ubah yaitu sebesar i1, i2, i3 hingga sudut biasnya r1, r2, r3 ternyata Snellius menemukan bahwa hasil perbandingan sinus sudut datang dengan sinus sudut biasnya selalu konstan atau tetap. Dengan hasil percobaannya tersebut, Snellius mengemukakan Hukum Pembiasan yang berbunyi sebagai berikut. Sinar datang, garis normal dan sinar bias terletak dalam satu bidang datar. Perbandingan sinus sudut datang dengan sinus sudut bias pada dua medium yang berbeda merupakan bilangan tetap. Secara matematis, pernyataan Hukum Snellius yang kedua di atas dapat dituliskan dalam bentuk persamaan berikut. sin i1 = sin i2 = sin i3 sin r1 sin r2 sin r3 sin i = Tetap ………………… pers. 1 sin r Tetapan atau konstanta tersebut disebut dengan indeks bias relatif suatu medium terhadap medium lain. Jika sinar datang dari medium 1 ke medium 2, maka indeks bias relatif medium 2 terhadap medium 1 ditulis sebagai berikut. Dengan demikian, persamaan 1 di atas dapat ditulis ulang sebagai berikut. Sehingga kita peroleh rumus hubungan antara sudut datang, sudut bias dan indeks bias medium sebagai berikut. Keterangan n1 = indeks bias mutlak medium 1 n2 = indeks bias mutlak medium 2 n21 = indeks bias relatif medium 2 terhadap medium 1 i = sudut datang pada medium 1 r = sudut bia pada medium 2 Selain kedua pernyataan Hukum Snellius di atas, masih ada hal lain yang berlaku pada peristiwa pembiasan cahaya, yaitu sebagai berikut. 1 Jika sinar datang dari medium kurang rapat ke medium lebih rapat, sinar akan dibiaskan mendekati garis normal. Ini berarti, sudut bias lebih kecil daripada sudut datangnya r < i. 2 Jika sinar datang dari medium lebih rapat ke medium kurang rapat, cahaya akan dibiaskan menjauhi garis normal. Jadi, sudut datang lebih kecil dari sudut bias i < r. 3 Jika sinar datang tegak lurus batas dua medium, maka sinar tidak dibiaskan melainkan diteruskan. Ketika cahaya cahaya dari sebuah medium merambat melewati medium lain yang berbeda kerapatan, cepat rambat cahaya akan berubah. Cepat rambat cahaya akan berkurang jika memasuki medium dengan kerapatan tinggi. Sebaliknya, cepat rambat cahaya akan bertambah jika memasuki medium dengan kerapatan rendah. Perbandingan cepat rambat cahaya di ruang hampa c dengan cepat rambat cahaya di dalam medium disebut indeks bias mutlak. Indeks bias mutlak suatu medium dapat dicari dengan rumus Keterangan n = indeks bias mutlak medium c = cepat rambat cahaya di ruang hampa 3 × 108 m/s v = cepat rambat cahaya di dalam medium Pada hukum Snellius di atas, indeks bias mutlak medium 1 ditunjukkan oleh n1 dan indeks bias mutlak medium 2 ditunjukkan dengan n2. Sementara itu, perbandingan indeks bias mutlak dari dua buah medium disebut indeks bias relatif. Jika cahaya datang dari medium 1 dengan indeks bias n1 menuju medium 2 dengan indeks bias mutlak n2, maka indeks bias relatif medium 2 terhadap medium 1 dinyatakan dengan persamaan berikut. Dengan mensubtitusikan persamaan n = c/v, kita mendapat bentuk persamaan berikut ini. Keterangan n21 = indeks bias relatif medium 2 terhadap medium 1 i = sudut datang r = sudut bias n1 = indeks bias medium 1 n2 = indeks bias medium 2 v1 = cepat rambat cahaya pada medium 1 v2 = cepat rambat cahaya pada medium 2 Contoh Soal Dalam sebuah eksperimen untuk menentukan kecepatan cahaya di dalam air, seorang siswa melewatkan seberkas cahaya ke dalam air dengan sudut datang 30°. Kemudian, siswa mencatat sudut bias yang terjadi di dalam air ternyata besarnya 22°. Jika kecepatan cahaya di udara dianggap 3 × 108 m/s, tentukan kecepatan cahaya di dalam air. Penyelesaian Diketahui i = 30° c = 3 × 108 m/s r = 22° Ditanyakan v Jawab Dengan menggabungkan persamaan n21 = sin i/sin r dengan persamaan n21 = c/v, maka kita peroleh persamaan berikut. Dengan demikian, kecepatan cahaya di dalam air v dapat kita hitung dengan rumus berikut. v = 3 × 108 m/s × sin 22° sin 30° v = 3 × 108 m/s × 0,37 0,5 Jadi, kecepatan cahaya di dalam air adalah 2,25 × 108 m/s.
ApakahCahaya itu? Cahaya menurut Newton (1642-1727) terdiri dari partikel-partilkel ringan berukuran sangat kecil yang dipancarkan oleh sumbernya ke segala arah dengan kecepatan yang sangat tinggi. Sementara menurut Huygens (1629-1695), cahaya adalah gelombang seperti bunyi. Perbedaan antara keduanya hanya pada frekuewensi dan panjang gelombang saja.. Dua pendapat di atas sepertinya saling
Foto Hai Quipperian, bagaimana kabarnya? Semoga tetap sehat dan selalu semangat belajar, ya! Pernahkah kamu melihat pensil atau sedotan yang seolah-olah patah saat dicelupkan sebagian batangnya ke dalam air? Saat kamu angkat dari dalam air, ternyata pensil atau sedotan tidak patah. Kira-kira, mengapa hal itu bisa terjadi? Tidak mungkin, kan, tiba-tiba sedotan patah di dalam air? Peristiwa tersebut bisa terjadi karena ada fenomena fisika yang disebut pembiasan cahaya. Ingin tahu selengkapnya? Check this out! Pengertian Pembiasan Cahaya Foto Pembiasan cahaya atau refraksi adalah peristiwa membeloknya arah rambat cahaya karena ada perbedaan medium. Pada contoh sedotan patah tadi, seberkas cahaya datang dari medium udara ke medium air. Mungkin hal yang akan menjadi pertanyaan kamu selanjutnya adalah apa hubungan antara perbedaan medium dan proses pembelokan cahaya atau pembiasan? Sebelumnya, simak dahulu hukum yang berkaitan dengan pembiasan cahaya berikut ini. Hukum Pembiasan Cahaya Foto Hukum pembiasan cahaya dicetuskan oleh matematikawan asal Belanda, Willebrord Snellius. Itulah sebabnya, hukum pembiasan cahaya biasa disebut hukum Snellius. adapun pernyataan hukum Snellius adalah sebagai berikut. Sinar datang, garis normal, dan sinar bias terletak satu bidang datar. Pembagian antara sinus sudut datang sudut bias menghasilkan suatu nilai yang disebut indeks bias. Setelah belajar hukum pembiasan, yuk pelajari proses terjadinya pembiasan. Proses Terjadinya Pembiasan Cahaya Foto Di pembahasan sebelumnya, dijelaskan bahwa arah rambat cahaya bisa mengalami pembelokan karena melalui dua medium yang berbeda. Ingat, setiap medium memiliki indeks bias yang berbeda-beda dan bersifat spesifik. Indeks bias merupakan besaran yang menunjukkan perbandingan kecepatan cahaya di ruang vakum dan di dalam medium. Secara matematis, dirumuskan sebagai berikut. Keterangan n = indeks bias medium; c = kecepatan cahaya di ruang vakum = 3 x 108 m/s; cm = kecepatan cahaya di dalam suatu medium. Jelas bahwa pembelokan cahaya disebabkan oleh adanya kecepatan cahaya dari medium udara ke medium yang berbeda, misalnya air. Untuk prosesnya, ditunjukkan oleh gambar berikut. Salah satu sifat cahaya adalah mampu merambat lurus. Namun, jika cahaya melewati dua buah medium yang berbeda indeks biasanya, cahaya akan dibelokkan seperti pada gambar di atas. Adapun ketentuan yang harus kamu perhatikan adalah sebagai berikut. 1. Jika cahaya datang dari medium kurang rapat indeks bias kecil—contohnya udara—ke arah medium rapat indeks bias besar—contohnya air—, maka arah rambat cahaya akan belok mendekati garis normal, sehingga sudut datang r sudut bias i. Berikut ini contohnya. Gambar di atas menunjukkan bahwa pada kondisi normal, cahaya akan merambat lurus dari A – B – C. Oleh karena indeks bias air lebih besar daripada udara, maka arah rambat cahaya akan dibelokkan menjadi A – B – D. Setelah kamu mempelajari tentang bagaimana seberkas cahaya bisa mengalami pembiasan, kini saatnya kamu harus tahu penerapan pembiasan cahaya dalam kehidupan sehari-hari. Penerapan Pembiasan Cahaya dalam Kehidupan Foto Fenomena pembiasan cahaya ini bisa diterapkan dalam kehidupan sehari-hari, yaitu sebagai berikut. 1. Pemantulan Sempurna Pemantulan sempurna terjadi jika seberkas cahaya datang medium rapat indeks bias besar menuju medium kurang rapat indeks bias kecil. Syarat terjadinya pemantulan sempurna adalah sudut datang harus lebih besar dari sudut sudut kritis sudut datang yang menghasilkan sudut bias 90o. Pemantulan sempurna ini dimanfaatkan untuk membuat serat optik. Serat optik merupakan sejenis kabel yang memiliki daya transmisi cukup tinggi. 2. Pensil atau Sedotan Terlihat Patah Seperti pembahasan di awal materi ini, pensil atau sedotan yang sebagian batangnya dicelupkan ke dalam air akan terlihat patah. Hal itu disebabkan oleh adanya perbedaan medium yang dilalui cahaya. 3. Air Laut Terlihat Dangkal Jika kamu pernah ke pantai, mungkin kamu merasa ingin berenang di dalam lautan karena lautan terlihat cukup dangkal. Sebenarnya, lautan tersebut tidaklah dangkal. Hal ini bisa terjadi karena cahaya melewati dua medium yang berbeda, dari udara ke air. Prinsipnya hampir sama dengan pensil yang seolah patah di dalam air. 4. Pembiasan Pada Lensa Lensa memiliki banyak manfaat di dalam kehidupan. Misalnya saja untuk kacamata, teropong, lup, dan mikroskop. Tahukah kamu, lensa bisa digunakan untuk membantu melihat benda-benda di luar batas kemampuan mata kita karena lensa bisa membiaskan cahaya yang masuk ke dalamnya? Indeks bias antara medium lensa dan udara jelas berbeda. Itulah mengapa lensa mampu membiaskan cahaya yang masuk ke dalamnya. Contohnya saja bagi penderita rabun jauh atau rabun dekat. Setelah memakai kacamata, para penderita bisa melihat kembali pada jarak normal karena bayangan yang dibentuk oleh benda tepat jatuh di retina. Itulah sekilas pembahasan tentang pembiasan cahaya. Semoga bermanfaat bagi kamu semua, ya. Jika Quipperian memiliki sejumlah pertanyaan tentang materi ini, silakan buka Quipper Video-nya. Tonton videonya, download buku panduannya, dan kerjakan soal-soalnya. Jika Quipperian ingin yang gratis, silakan buka Quipper School. Quipper School menyediakan banyak soal-soal yang bisa kamu akses secara cuma-cuma. Salam Quipper! Penulis Eka Viandari
Pembiasancahaya yang benar ditunjukkan oleh gambar . Sifat-Sifat Cahaya. Cahaya. Optik. Fisika.

Pernahkah kalian menggunakan kaca pembesar, kamera, atau mikroskop? Jika pernah, berarti kalian pernah menggunakan lensa untuk membentuk bayangan. Lensa adalah benda bening yang membiaskan cahaya. Kebanyakan lensa terbuat dari kaca atau plastik dengan dua permukaan. Lensa mempunyai dua permukaan lengkung atau satu permukaan lengkung dan satu permukaan datar. Seperti halnya cermin lengkung, berdasarkan bentuknya, lensa dibedakan atas lensa cembung dan lensa cekung. Nah pada kesempatan kali ini kita akan belajar mengenai pembiasan cahaya pada lensa cembung. Tahukah kalian apa itu lensa cembung? Bagiamana proses pembentukan bayangan pada lensa cembung? Untuk menjawab pertanyaan tersebut, silahkan kalian simak penjelasan berikut ini. Pengertian Lensa Cembung Lensa cembung adalah lensa dengan bagian tengah lebih tebal daripada bagian tepi. Cahaya yang jatuh pada permukaan lensa cembung akan mengalami pembiasan. Berkas-berkas sinar datang akan dibiaskan sehingga berkas-berkas sinar biasnya mengumpul. Bagian lensa yang tebal akan menghambat cahaya lebih banyak daripada bagian lensa yang tipis. Oleh karena cepat rambat cahaya di dalam lensa lebih kecil daripada di udara, maka berkas-berkas sinar bias akan mengumpul. Itulah sebabnya lensa cembung bersifat konvergen. Dari gambar di atas, sinar-sinar cahaya yang datang sejajar sumbu utama lensa dibiaskan menuju titik fokus. Sinar-sinar tersebut mengumpul pada titik fokus, sehingga sinar-sinar itu bisa membentuk bayangan nyata yang dapat diproyeksikan pada layar. Besar pembiasan cahaya pada suatu lensa bergantung pada indeks bias bahan lensa dan kelengkungan permukaan lensa, sedangkan indeks bias bergantung pada cepat rambat cahaya dalam bahan lensa tersebut. Lensa cembung yang tebal akan membiaskan cahaya lebih besar daripada lensa cembung tipis. Ini berarti bahwa panjang fokus lensa cembung tebal lebih pendek daripada panjang fokus lensa cembung tipis. Pada lensa cembung, titik fokus tempat berpotongan sinar-sinar bias selalu berada di bagian belakang lensa cembung maka fokus lensa cembung adalah fokus sejati, sehingga jarak fokus lensa cembung selalu bertanda positif. Oleh karena itu, lensa cembung disebut juga lensa positif. Macam-Macam Lensa Cembung Lensa cembung dibedakan menjadi tiga macam, yaitu lensa dobel cembung/cembung ganda bikonveks, lensa cembung-datar plan-konveks, dan lensa cembung cekung konveks-konkaf. Untuk memahami ketiga jenis lensa tersebut, perhatikan gambar di bawah ini. Lensa Bikonveks merupakan lensa yang berbentuk cembung pada kedua permukaannya. Lensa Plan-konveks adalah lensa cembung yang dibatasi oleh satu bidang datar dan satu bidang cembung. Lensa Konveks-Konkaf merupakan lensa yang dibatasi oleh satu bidang cembung dan satu bidang cekung. Bagian-Bagian Lensa Cembung Sebelum kalian dapat memahami bagaimana proses pembentukan bayangan pada lensa cembung atau lensa konveks, kalian perlu mengetahui bagian-bagian penting pada lensa ini. Lensa cembung memiliki bagian-bagian seperti yang ditunjukkan pada gambar berikut ini. Keterangan P1 dan P2 = Titik pusat bidang lengkung lensa P1P2 = Sumbu utama lensa R1 dan R2 = Jari-jari kelengkungan permukaan lensa O = Pusat optik lensa OP1 dan OP2 = Jari-jari kelengkungan R F1 dan F2 = Titik api titik fokus lensa OF1 dan OF2 = Jarak fokus lensa f Pada gambar di atas, titik F disebut titik fokus. Berbeda dengan cermin cembung, titik fokus pada lensa cembung ada dua, yaitu fokus di depan lensa F2 dan fokus di belakang lensa F1. Titik fokus F1 disebut fokus utama atau fokus aktif. Sedangkan F2 disebut fokus pasif. Titik fokus aktif adalah titik fokus tempat sinar-sinar dibiaskan sedangkan titik fokus lainnya ditetapkan sebagai fokus pasif. Fokus aktif dan fokus pasif simetri terhadap lensa. Ketika kalian menghadapkan lensa cembung ke arah matahari, maka di belakang lensa di atas tanah akan tampak sebuah titik terang. Dengan menggeser lensa naik turun, kalian akan mendapatkan titik yang paling terang dan tampak silau. Titik tersebut merupakan titik fokus lensa. Jika titik tersebut jatuh di atas kertas atau kapas benda yang mudah terbakar kertas atau kapas tersebut dapat terbakar. Sementara titik P1 dan P2 pada gambar bagian-bagian lensa cembung di atas dinamakan titik kelengkungan lensa dan jarak OP1 atau OP2 disebut jari-jari kelengkungan lensa atau R. Seperti halnya pada cermin, pada lensa juga berlaku hubungan R = 2f. Titik O disebut sebagai titik pusat lensa. Sinar-Sinar Istimewa Lensa Cembung Untuk melukis pembentukan bayangan pada lensa cembung, maka dapat digunakan sinar-sinar istimewa. Lalu tahukah kalian apa saja sinar-sinar istimewa pada lensa cembung ini? Terdapat 4 macam sinar istimewa pada lensa cembung seperti yang ditunjukkan pada gambar berikut ini. Sinar istimewa 1 Sinar datang sejajar sumbu utama akan dibiaskan melalui titik fokus F1 di belakang lensa. Sinar istimewa 2 Sinar datang menuju titik fokus di depan lensa F2 akan dibiaskan sejajar sumbu utama. Sinar istimewa 3 Sinar yang datang melewati pusat optik lensa O akan tidak dibiaskan melainkan diteruskan. Sinar istimewa 4 Sinar datang dengan arah sembarang dibiaskan melalui titik fokus tambahan FT di belakang lensa. FT adalah titik perpotongan garis sejajar sinar datang yang melewati pusat optik lensa dengan garis tegak lurus yang ditarik dari titik fokus F1. Pembentukan dan Sifat Bayangan pada Lensa Cembung Nah, dengan menggunakan dua dari empat sinar istimewa di atas, kita dapat melukiskan pembentukan bayangan pada lensa cembung. Dalam melukiskan pembentukan bayangan pada lensa cembung, kita dapat menggambarkan lensa dengan simbol berikut. Untuk mempermudah pembentukan bayangan, ruang di depan dan di belakang lensa dibagi menjadi beberapa ruangan seperti yang ditunjukkan pada gambar berikut ini. Keterangan I, II, III, dan IV adalah nomor ruang benda sedangkan I, II, III dan IV adalah nomor ruang bayangan. Setiap lensa memiliki dua buah titik fokus di sebelah kiri dan kanannya. Jarak kedua fokus tersebut sama. Adapun langkah-langkah dalam menggambarkan proses pembentukan bayangan pada lensa cembung adalah sebagai berikut. a Posisikan benda di depan lensa cembung, misalkan di ruang III, yaitu ruang di antara titik P2 sampai tak hingga ~ b Lukis dua buah sinar istimewa pada lensa cembung. c Sinar selalu datang dari permukaan lensa dan dibiaskan ke belakang lensa. d Perpotongan antara dua sinar bias merupakan letak bayangan. Jika perpotongan didapat dari perpanjangan sinar bias, bayangan bersifat maya dan dilukiskan dengan garis putus-putus. e Dari gambar pembentukan bayangan di atas, bayangan terbentuk dari perpotongan langsung sinar bias sehingga bayangan tersebut bersifat nyata. Karena posisi terbalik dan ukuran lebih kecil, maka bayangan juga bersifat terbalik dan diperkecil. Jadi kesimpulannya adalah ketika benda berada di ruang III lensa cembung, maka sifat bayangan yang dihasilkan adalah nyata, terbalik dan diperkecil. Letak dan sifat bayangan yang dibentuk oleh lensa cembung bergantung pada letak benda. Sebuah objek yang diletakkan di depan sebuah lensa cembung akan memiliki bayangan dengan sifat tertentu. Misalnya, apabila benda berada di ruang II, maka bayangan terletak di ruang III dan bersifat nyata, terbalik dan diperbesar. Sedangkan apabila benda berada di ruang III, maka bayangan terletak di ruang II dan bersifat nyata, terbalik dan diperbesar. Sifat-sifat bayangan ketika benda terletak di ruang I, II, III, titik fokus, dan di titik pusat kelengkungan lensa beserta gambar dan contoh soal dapat kalian temukan dalam artikel tentang 5 Macam Sifat Bayangan Pada Cermin Cekung dan Cara Menentukannya. Rumus pada Lensa Cembung Sama halnya dengan cermin cekung, pada lensa cembung, jumlah nomor ruang benda dengan nomor ruang bayangan sama dengan lima. Secara matematis, rumus nomor ruang benda dan bayangan pada lensa cembung adalah sebagai berikut. Nomor ruang benda + nomor ruang bayangan = V Pada lensa cembung, hubungan antara jarak benda s dan jarak bayangan s’ akan menghasilkan jarak fokus f. Hubungan tersebut secara matematis dapat ditulis sebagai berikut. 1 = 1 + 1 f s s' 2 = 1 + 1 R s s' Keterangan s = jarak benda s’ = jarak bayangan f = jarak fokus R = jari-jari lensa Sementara perbesaran bayangan M dapat dicari melalui perbandingan antara tinggi bayangan dengan tinggi benda atau jarak bayangan dengan jarak benda yang dirumuskan sebagai berikut. Keterangan M = perbesaran bayangan h' = tinggi bayangan h = tinggi benda s’ = jarak bayangan s = jarak benda Pada lensa cembung, makin kecil jarak titik fokusnya, maka makin kuat lensa tersebut memancarkan sinar. Hal ini berarti bahwa kekuatan lensa berbanding terbalik dengan jarak titik fokusnya. Secara matematis, kekuatan lensa dirumuskan sebagai berikut. Keterangan P = kekuatan lensa dioptri = D f = jarak fokus m Catatan kekuatan lensa dinyatakan dalam dioptri bila jarak fokus dinyatakan dalam satuan meter. Oleh karena itu, sebelum menentukan kekuatan lensa, terlebih dahulu kalian harus mengonversi satuan jarak fokus ke meter m. Contoh Soal dan Pembahasan Sebuah benda dengan tinggi 3 cm berada pada jarak 10 cm dari lensa cembung yang mempunyai jarak fokus 6 cm. a. Gambarkan pembentukan bayangan yang terjadi. b. Bagaimanakah sifat bayangannya? c. Tentukan tinggi benda. Penyelesaian Diketahui h = 3 cm s = 10 cm f = 6 cm Ditanyakan a. Lukisan bayangan b. Sifat bayangan c. h’ Jawab a. Lukisan pembentukan bayangan Jarak fokus lensa adalah 6 cm sehingga jari-jari kelengkungan lensa adalah 2 kali jarak fokus, yaitu R = 2 × f = 2 × 6 = 12 cm Dengan demikian, jarak benda lebih besar dari jarak fokus dan lebih kecil dari jari-jari lensa, dapat kita tuliskan sebagai berikut. R > s > f Jadi, benda terletak di ruang II di antara F2 dan P2. Lukisan pembentukan bayangan dari benda tersebut ditunjukkan pada gambar berikut ini. b. Sifat bayangan Berdasarkan gambar pembentukan bayangan di atas, maka sifat bayangan yang terbentuk adalah nyata, terbalik, dan diperbesar. c. Tinggi bayangan h’ Untuk menentukan tinggi bayangan, kita terlebih dahulu mencari jarak bayangan s’ dengan menggunakan rumus berikut. 1/f = 1/s + 1/s’ 1/6 = 1/10 + 1/s’ 1/s’ = 1/6 – 1/10 1/s’ = 5/30 – 3/30 1/s’ = 2/30 s' = 30/2 s’ = 15 cm Kemudian, dengan menggunakan rumus perbesaran bayangan, maka tinggi bayangan adalah sebagai berikut. h'/h = s’/s h’ = s’/s × h h’ = 15/10 × 3 h’ = 45/10 h’ = 4,5 cm Jadi, tinggi bayangan benda adalah 4,5 cm.

Saatcahaya dibiaskan dari udara ke air (gambar A), cahaya akan merambat dari medium yang kurang rapat ke medium yang lebih rapat. Air memiliki indeks bias yang lebih besar dari udara (n 2 > n 1 ), sehingga arah belok cahaya dari bidang batas dua medium juga besar. Oleh karena itu, cahaya akan dibiaskan/dibelokkan mendekati garis normal. Cahaya yang menimbulkan pembiasan. - Kids, apakah kamu tahu peristiwa pembiasan cahaya? Refraksi atau pembiasan cahaya didefinisikan sebagai perubahan arah rambat partikel cahaya akibat terjadinya suatu percepatan. Peristiwa ini terjadi pada optika era optik geometris dengan refraksi cahaya yang dijabarkan dengan hukum snellius. Baca Juga Proses Bagaimana Terbentuknya Sebuah Bayangan dan Sifat-Sifat yang Dimunculkannya, Sudah Tahu? Hukum snellius sendiri adalah proses terjadinya bayangan secara bersamaan dengan refleksi gelombang pada cahaya. Tumbukan antara gelombang cahaya menyebabkan kecepatan fase gelombang cahaya akan berubah seketika. Lalu, apa saja contoh peristiwa pembiasan cahaya? Penasaran, kan? Yuk, simak ulasannya! Contoh Peristiwa Pembiasan Cahaya dalam Kehidupan Sehari-Hari 1. Berlian yang Tampak Berkilau Pixabay Berlian yang mengkilap adalahsalah satu contoh pembiasan cahaya. Cahaya yang menyinari berlian akan mengalami serangkaian proses pembiasan oleh permukaan permukaan berlian tersebut. Hal ini disebabkan indeks bias intan yang cukup besar dan sudut kritis berlian yang kecil sehingga menyebabkan mereka akan tampak berkilau. Baca Juga Daftar 5 Negara Tertinggi di Dunia, Salah Satunya Jadi Sumber Berlian 2. Sedotan yang Tampak Bengkok dalam Gelas Berisi Air Pixabay Sedotan yang bengkok dalam gelas berair adalah salah satu contoh pembiasan cahaya. Sedotan yang bagiannya masuk di dalam gelas berisi air akan terlihat bengkok jika dilihat dari luar. Hal ini terjadi karena cahaya yang datang dari udara kurang rapat berjalan menuju air lebih rapat akan mengalami pembiasan menjauhi garis normal. Proses pembiasan cahaya ini pun terjadi di dalam gelas tersebut. Hal ini yang mengakitbatkan sedotan dalam gelas berair akan tampak bengkok karena enggak berada di titik sebenarnya garis normal. 3. Dasar Kolam yang Tampak Dangkal Pixabay Kolam renang yang terlihat dangkal adalah salah satu contoh pembiasan cahaya. Dasar kolam akan tampak seolah dangkal jika dilihat dari permukaan daratan, Kids. Hal ini disebabkan karena cahaya yang datang dari udara kurang rapat menuju air lebih rapat dan akan mengalami pembiasan menjauhi garis normal. Proses pembiasan cahaya ini akan berlangsung di dalam kolam renang tersebut. Baca Juga Unik dan Langka! Berjarak 800 Tahun Cahaya dari Bumi, Ilmuwan Temukan Dua Planet Raksasa Menari Bersama Hal ini menyebabkan seolah dasar kolam akan terlihat dangkal karena terjadi pembiasan akibat bayangan dasar kolam bukan bentuk yang sesungguhnya. Nah, itu dia, Kids, contoh peristiwa pembiasan cahaya dalam kehidupan sehari-hari. Semoga bermanfaat! - Teman-teman, kalau ingin tahu lebih banyak tentang sains, dongeng fantasi, cerita misteri, dan pengetahuan seru, langsung saja berlangganan majalah Bobo dan Mombi SD. Tinggal klik di Artikel ini merupakan bagian dari Parapuan Parapuan adalah ruang aktualisasi diri perempuan untuk mencapai mimpinya. PROMOTED CONTENT Video Pilihan
Kalaupembiasan cahaya itu berada pada medium yang berbeda. Jadi, sinar datang akan diteruskan menuju air. Untuk lebih jelasnya, perhatikan gambar di bawah ini, yuk! Ilustrasi pembiasan cahaya. (Arsip Zenius) Perlu diingat kalau hubungan antara sudut datang dan sudut bias disebut dengan indeks bias.
FisikaOptik Kelas 8 SMPCahayaSifat-Sifat CahayaSifat-Sifat CahayaCahayaOptikFisikaRekomendasi video solusi lainnya0051Berkas sinar-sinar yang datang dari satu titik disebut be...Berkas sinar-sinar yang datang dari satu titik disebut be...0049Sebuah prisma memiliki sudut pembias 10 terbuat dari kaca...Sebuah prisma memiliki sudut pembias 10 terbuat dari kaca...0408Sebuah prisma optik mempunyai indeks bias 1,8. Sinar data...Sebuah prisma optik mempunyai indeks bias 1,8. Sinar data... .
  • gmy19zrdgy.pages.dev/14
  • gmy19zrdgy.pages.dev/360
  • gmy19zrdgy.pages.dev/180
  • gmy19zrdgy.pages.dev/61
  • gmy19zrdgy.pages.dev/483
  • gmy19zrdgy.pages.dev/922
  • gmy19zrdgy.pages.dev/754
  • gmy19zrdgy.pages.dev/140
  • gmy19zrdgy.pages.dev/543
  • gmy19zrdgy.pages.dev/154
  • gmy19zrdgy.pages.dev/121
  • gmy19zrdgy.pages.dev/910
  • gmy19zrdgy.pages.dev/355
  • gmy19zrdgy.pages.dev/581
  • gmy19zrdgy.pages.dev/657
  • gambar pembiasan cahaya yang benar